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Abstract

Link32 is a tactical communication protocol designed for low-latency,
secure, and scalable data exchange in contested environments, enabling
swarm drone coordination, real-time position location information (PLI),
command and control (C2), and tactical chat over UDP-based multicast
networks. Skynet, its reference implementation, is a lightweight C99
framework inspired by LTE’s QoS Class Identifier (QCI) framework, tai-
lored for military applications and resource-constrained devices such as
drones and embedded systems. With minimal dependencies and a focus on
portability, Skynet supports dynamic TDMA slot management, AES-256-
GCM encryption, and lock-free concurrency, ensuring robust performance
in mission-critical scenarios.
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1 Introduction

Link32 is a tactical communication protocol inspired by standards such as VMF,
TSM, SRW, and MQTT [4], LTE (HSS, PDCP, MME, QCI), and TDL [1],
tailored for military applications requiring robust, low-latency, and secure data
exchange in contested environments. It facilitates swarm drone coordination,
real-time position location information (PLI), command and control (C2), and
tactical chat using UDP-based multicast networks.

Skynet is the reference server implementation of Link32, developed in C99
with minimal dependencies to ensure portability and performance on resource-
constrained devices. Its convergence layer draws inspiration from LTE’s QoS
Class Identifier QCI framework [3], enabling granular QoS control and dynamic
resource allocation for mission-critical communications.

1.1 Principles

Link32 adheres to the following design principles:

• Threat Model: Confidentiality and integrity, no non-repudiation.

• Latency: Microsecond-precision timings .

• Implementation: Written in C99 for portability and performance.

• Key Provisioning: Key distribution for controlled setup.

• Mandatory Encryption: All messages encrypted with AES-256-GCM.

• Node Identification: Node names hashed to 32-bit using FNV-1a.

• Lock-Free Design: Uses atomic compare-and-swap for concurrency.

• Topic Architecture: Topics map to IP multicast groups.

• Queue Management: Global network queue, per-topic subscribes.

• Key Storage: Separate key stores per executable.
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1.2 Properties

Link32 and Skynet are designed with the following properties:

• Message Size: 32-byte header (48 bytes payload with GCM tag).

• Security: ECDH key exchange SECP384R1, Mandatory AES-256-GCM.

• Non-blocking: Using monotonic clocks and non-blocking I/O.

• Footprint: ∼64KB L1 cache usage, ∼2000 lines of code (LOC).

• Swarm Scalability: Supports large-scale drone swarms.

• Dependencies: Single dependency on OpenSSL for cryptography.

2 Link32 Protocol

2.1 S-Message Format

The Link32 message structure, SkyNetMessage, is compact for large-scale swarm
communication:

typedef struct {

uint8_t version : 4; // Protocol version (current: 1)

uint8_t type : 4; // Message type (0-6)

uint8_t qos : 4; // Quality of Service (0-3)

uint8_t hop_count : 4; // Hop count for routing (0-15)

uint32_t npg_id; // Topic identifier (1 -103)

uint32_t node_id; // Sender node ID (FNV -1a hash)

uint32_t seq_no; // Sequence number for deduplication

uint8_t iv[16]; // AES -256-GCM initialization vector

uint16_t payload_len; // Payload length (0 -32767)

uint8_t payload[MAX_BUFFER ]; // GCM -TAG

} SkyNetMessage;

• Header Size: 32 bytes.

• Minimum Payload Size: 48 bytes minimum (32-byte + GCM tag).

• Maximum Payload Size: Up to 32720 bytes.
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2.2 Message Types

The protocol defines seven message types, as shown in Table 1.

Table 1: Link32 Message Types
Type Name Description

0 Key Exchange Exchanges ECC public keys for ECDH session setup.
1 Slot Request Requests a TDMA slot from the server.
2 Chat Sends tactical chat messages.
3 Ack Acknowledges slot assignments or control messages.
4 Waypoint Specifies navigation waypoints for C2.
5 Status Reports position, velocity, or sensor data (e.g., PLI).
6 Formation Coordinates swarm formations.

2.3 Multicast Topics

Link32 uses multicast topics mapped to IP multicast groups, as in Table 2.

Table 2: Multicast Topics
NPG Name Multicast Purpose

1 npg control 239.255.0.1 Kkey exchange, Slot requests.
6 npg pli 239.255.0.6 Position information (status).
7 npg surveillance 239.255.0.7 Sensor data forwarding.
29 npg chat 239.255.0.29 Tactical chat and acks.
100 npg c2 239.255.0.100 C2 (waypoints, formations).
101 npg alerts 239.255.0.101 Network alerts and self-healing.
102 npg logistics 239.255.0.102 Logistical coordination.
103 npg coord 239.255.0.103 Swarm Coordination.
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2.4 Slot Management

Link32 employs a Time Division Multiple Access (TDMA)-like slot manager to
minimize collisions:

• Slot Array: Fixed-size (256) array slots.

• Dynamic Topics: Each slot creates a temporary multicast group.

• Allocation: First-come, first-serve with no timeouts.

• Timing: Slots cycle every TIME SLOT INTERVAL US=1000µs.

Clients send SKYNET MSG SLOT REQUEST to NPG 1, and the server assigns slots
via SKYNET MSG ACK.

2.5 Deduplication

A fixed-size circular buffer (seq cache) prevents message loops:

• Structure: Stores node id, seq no.

• Memory: ∼16KB (1024 × 16 bytes).

• Complexity: O(1) lookup using FNV-1a hashing.

• Threshold: Discards duplicates within 1 second.

2.6 Security

Security mechanisms include:

• Key Exchange: ECDH over secp384r1 for 256-bit AES keys.

• Encryption: AES-256-GCM with 16-byte IV and 16-byte tag.

• Key Storage: Per Process in ec priv and ec pub.

• Key Derivation: HKDF-SHA256 for AES keys.

• Self-messages: Skips (drops) messages.
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2.7 Subscriptions

Nodes subscribe to topics based on roles, as shown in Table 3:

Table 3: Role-Based Subscriptions
Role NPGs Purpose
Infantry 1, 29 Network control and tactical chat.
Drone 1, 6, 7, 100, 101 C2, PLI, surveillance, alerts.
Air 1, 6, 7, 100, 101, 103 C2, PLI, surveillance, alerts, coord.
Sea 1, 7, 29, 102, 103 C2, surveillance, chat, logistics, coord.
Ground 1, 7, 29, 102 C2, surveillance, chat, logistics.
Relay 1, 6, 101 C2, PLI, alerts for relaying.
Controller 1, 6, 100, 101 C2, PLI, alerts for command posts.

3 Skynet Implementation

3.1 Dependencies

• OpenSSL: For ECC, ECDH, and AES-256-GCM.

• C99 Compiler: GCC or equivalent.

• POSIX Environment: For threading, epoll, and timerfd.

3.2 Build

To build Skynet:

# git clone git@github.com:BitEdits/skynet

# cd skynet

# cc -o skynet_client skynet_client.c skynet_proto.c -lcrypto

# cc -o skynet skynet.c skynet_proto.c skynet_conv.c -lcrypto -pthread
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3.3 Installation

The provisioning script skynet.sh generates ECC key pairs:

# ./ skynet.sh

Generated keys for node npg_control (hash: 06 c5bc52) in /secp/

Generated keys for node npg_pli (hash: c9aef284) in /secp/

Generated keys for node npg_surveillance (hash: 4d128cdc) in /secp/

Generated keys for node npg_chat (hash: 9c69a767) in /secp/

Generated keys for node npg_c2 (hash: 89 f28794) in /secp/

Generated keys for node npg_alerts (hash: 9f456bca) in /secp/

Generated keys for node npg_logistics (hash: 542105 cc) in /secp/

Generated keys for node npg_coord (hash: e46c0c22) in /secp/

Generated keys for node server (hash: 40 ac3dd2) in /secp/

Generated keys for node client (hash: 8f929c1e) in /client/secp/

# cp /secp /*. ec_pub /client/secp/

3.4 Server Operation

The server binds to UDP port 6566, joins multicast groups, and processes mes-
sages using a global queue. Example output:

# skynet server

Node 40 ac3dd2 bound to 0.0.0.0:6566.

Joined multicast group 239.255.0.1 (NPG 1: control ).

Joined multicast group 239.255.0.6 (NPG 6: PLI).

Message received , from=8f929c1e , to=1, size =231.

Decryption successful , from=8f929c1e , to=1, size =215.

Saved public key for client 8f929c1e.

Assigned slot 0 to node 8f929c1e.

Message received , from=8f929c1e , to=6, size =40.

Decryption successful , from=8f929c1e , to=6, size =24.

Message sent from=8f929c1e , to=6, seq=3, multicast =239.255.1.0.

3.5 Client Operation

The client joins topic-specific multicast groups and sends key exchange, slot
requests, and status messages. Example output:

# skynet_client client

Node 8f929c1e connecting to port 6566.

Joined multicast group 239.255.0.1 (NPG 1).

Joined multicast group 239.255.0.6 (NPG 6).

Sent key exchange message to server.

Sent slot request message to server.

Received slot assignment: slot =0.

Joined slot group 2399540.1.

Sent status message: multicast =239.255.1.0 ,

pos =[0.1 , 0.1, 0.1],

vel =[0.0 , 0.0, 0.0],

seq =2.
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3.6 Usage

Skynet includes five utilities:

Keys Provisioning

Generates ECC key pairs.

skynet_keygen <node > [--server|--client]

Message Encryption

Encrypts a test message to <npg id>.sky.

skynet_encrypt <sender > <recipient > <file >

Message Decryption

Decrypts <file.sky>.

skynet_decoder <sender > <recipient > <file.sky >

Skynet Server

Runs the server with FNV-1a hashed <node>.

skynet <node >

Skynet Client

Runs the client with FNV-1a hashed <node>.

skynet_client <node >

3.7 Limitations

• Slot Scalability: Fixed SLOT COUNT=256 limits nodes to 256.

• No Retransmission: Dropped messages are not retransmitted.

• Key Management: Manual public key copying required.

• Deduplication: SEQ CACHE SIZE=1024 may cause collisions.
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4 Convergence Architecture

The Skynet system’s convergence layer employs a 3-level structural hierarchy
comprising Quality of Service (QoS), Bearer, and Entity components. This
design is driven by the need for granular QoS control, per-node resource man-
agement, reliable packet delivery, dynamic slot allocation, and scalability in a
Time Division Multiple Access (TDMA)-based tactical network. Inspired by
the Long-Term Evolution (LTE) QoS Class Identifier (QCI) framework, the
hierarchy ensures military-grade performance, including latency below 50ms for
command-and-control (C2) traffic and reliable delivery for critical communi-
cations, such as swarm drone coordination. Compared to alternative designs,
such as flat or centralized structures, this approach excels in dynamic, resilient
scenarios, providing robust and scalable QoS management.

4.1 Flat QoS Structure

A flat QoS structure assigns slots directly to Network Protocol Groups (NPGs)
based on their QoS profiles, without intermediate bearer or entity layers. For
example, an NPG like SKYNET NPG C2 might be statically allocated three slots
with QoS level 3. While simpler and requiring less memory, this approach lacks
per-node isolation, making it unsuitable for dynamic networks with multiple
nodes sharing the same NPG. It also complicates reliable delivery, as there
is no mechanism for per-flow reordering or sequence tracking. Additionally,
static slot assignments cannot adapt to node arrivals or departures, leading to
inefficient resource utilization. The 3-level hierarchy overcomes these limitations
by introducing bearers for flow isolation and entities for node-level coordination,
enabling dynamic and scalable QoS management.

typedef struct {

uint32_t npg_id;

uint8_t qos;

uint32_t slot_count;

uint32_t slot_ids[MAX_QOS_SLOTS ];

uint8_t priority;

} QoSSlotAssignment;

4.2 Hierarchical QoS Structure

The 3-level hierarchy separates concerns into QoS, Bearer, and Entity layers,
each addressing specific aspects of network management. The SkyNetBearerQoS
structure defines QoS parameters such as priority (1–15, where 1 is highest),
delay budget (in milliseconds), reliability (best-effort or reliable), and minimum
TDMA slots, allowing precise service differentiation. The SkyNetBearer rep-
resents a logical communication channel for a node-NPG pair, encapsulating
QoS parameters, assigned slots, and state for reordering and reliability. The
SkyNetConvergenceEntity aggregates bearers for a single node, managing slot
requests and coordinating resource allocation. This modular design ensures
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scalability, flexibility, and robustness, outperforming flat structures by providing
flow isolation and dynamic adaptation.

typedef struct {

uint8_t priority; // 1-15 (1 = highest)

uint32_t delay_budget_ms ;// Delay tolerance (ms)

uint8_t reliability; // 0 (best -effort), 1 (reliable)

uint32_t min_slots; // Minimum TDMA slots

} SkyNetBearerQoS;

typedef struct {

uint32_t bearer_id; // Unique bearer ID

SkyNetBearerQoS qos; // QoS parameters

uint32_t node_id; // Owning node

uint32_t npg_id; // Associated NPG

uint32_t assigned_slots[SKYNET_MAX_SLOTS ]; // Assigned slot IDs

uint32_t slot_count; // Number of assigned slots

SkyNetMessage reorder_queue[SKYNET_REORDER_SIZE ];

uint32_t expected_seq_no ;// Next expected sequence number

uint32_t last_delivered; // Last delivered sequence number

uint64_t last_reorder_time_us; // Last reorder check

} SkyNetBearer;

typedef struct {

SkyNetBearer bearers[SKYNET_MAX_BEARERS ]; // Active bearers

uint32_t bearer_count; // Number of active bearers

atomic_uint slot_requests_pending; // Pending slot requests

} SkyNetConvergenceEntity;

4.3 Granular QoS Control

Tactical networks handle diverse traffic types, such as C2, position location
information (PLI), and chat, each with distinct latency, reliability, and band-
width requirements. A uniform QoS approach fails to meet these needs. The
SkyNetBearerQoS structure enables granular control by defining specific pa-
rameters for each bearer. For instance, SKYNET NPG CONTROL (NPG 1, QoS 3) is
assigned three slots with a low delay budget to ensure timely C2 delivery, while
SKYNET NPG CHAT (NPG 103, QoS 0) receives one slot for best-effort traffic.
This differentiation, inspired by LTE QCI, guarantees that high-priority traffic
meets stringent military requirements, such as sub-50ms latency for C2, while
optimizing resource allocation for lower-priority flows.

4.4 Per-Node and Per-Flow Resource Management

Each node in the network may support multiple concurrent flows (e.g., C2, PLI,
control) with varying QoS needs. Without isolation, these flows compete for
resources, risking contention and degraded performance. The SkyNetBearer

structure provides flow-level isolation by associating each bearer with a spe-
cific node-NPG pair, tracking its assigned slots and QoS parameters. The
SkyNetConvergenceEntity groups all bearers for a node, enabling centralized
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resource management and preventing one flow from starving others. This per-
node and per-flow approach ensures efficient slot allocation, supports multiple
simultaneous communications, and scales to accommodate dynamic network
topologies.

4.5 Reliability and Reordering

TDMA networks may deliver packets out of order due to slot scheduling or re-
transmissions, particularly for reliable traffic (e.g., reliability=1). The bearer
includes a reorder queue and tracks expected seq no and last delivered to
reorder packets and ensure reliable delivery. The entity coordinates reorder
checks across bearers using last reorder time us, minimizing overhead. This
mechanism is critical for applications requiring guaranteed delivery, such as C2
or control messages, and enhances robustness compared to flat structures, which
lack per-flow reordering capabilities.

4.6 Dynamic Slot Allocation

Tactical networks operate in dynamic environments where nodes join or leave,
and traffic patterns shift. Static slot assignments are inefficient and inflexible.
The entity tracks slot requests pending and manages bearer slot assignments
via assigned slots and slot count. The bearer parameter min slots ensures
minimum resource guarantees, while the entity facilitates dynamic re-allocation
through the skynet convergence schedule slots function. Weighted Fair
Queuing, driven by bearer priorities, optimizes slot distribution, ensuring high-
QoS traffic receives preferential treatment. This adaptability is a key advantage
over static or centralized designs.

4.7 Scalability and Modularity

A flat QoS structure becomes unwieldy as the number of nodes and NPGs in-
creases, complicating scheduling and state management. The 3-level hierarchy
addresses this by separating concerns: QoS defines service requirements, bearers
manage flow-specific state, and entities coordinate node-level convergence. This
modular design scales to support large networks, simplifies debugging, and facili-
tates maintenance. The entity layer aggregates bearer state, reducing scheduling
complexity from O(n) for n bearers to O(m) for m nodes. The hierarchy also
supports future enhancements, such as preemption or adaptive QoS, without
requiring a system overhaul.

4.8 LTE QCI Compatibility

The 3-level hierarchy draws inspiration from LTE’s QCI framework, which uses
bearers with QoS profiles to manage diverse traffic types (e.g., VoIP, video, best-
effort) per User Equipment (UE). By adapting this model to TDMA, Skynet
replaces LTE’s EPS bearers with TDMA slot-based bearers, leveraging telecom
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best practices. The bearer parameters mirror QCI attributes, such as prior-
ity and delay budget, ensuring compatibility with established standards. This
alignment reduces design risk, enhances interoperability with telecom systems,
and provides a familiar framework for engineers, making it easier to develop and
maintain the system.

4.9 MQTT Compatibility

Skynet’s convergence layer maps its QoS levels to MQTT’s QoS semantics
(ISO/IEC 20922:2016) and LTE’s QCI framework (3GPP TS 23.203, Release
15), enabling compatibility with both standards for tactical communications.
MQTT defines three QoS levels:

• QoS 0 (At Most Once): Best-effort delivery with no acknowledgment
or retransmission. Suitable for non-critical data like tactical chat where
packet loss is tolerable.

• QoS 1 (At Least Once): Guarantees at least one delivery with ac-
knowledgment (ACK), allowing duplicates. Used for data requiring de-
livery, such as position location information (PLI), where duplicates are
acceptable.

• QoS 2 (Exactly Once): Ensures exactly one delivery via a four-way
handshake (PUBLISH, PUBREC, PUBREL, PUBCOMP). Critical for command
and control (C2) messages requiring no loss or duplication.

Skynet implements these using its SkyNetBearerQoS and SkyNetBearer struc-
tures, configured via skynet convergence init. QoS 0 skips reorder queue

and ACKs, QoS 1 uses ACKs (SKYNET MSG ACK) with retransmission on timeout
(100ms), and QoS 2 employs a handshake with strict ordering and deduplica-
tion via seq no. All Network Protocol Groups (NPGs) and message types are
mapped to QoS levels, as shown in Table 4.

Table 4: Skynet QoS Mapping to MQTT and LTE QCI
QoS Priority NPG QCI Budget Slots Type
0 15 29 QCI 9 300ms 1 2
0 14 102 QCI 9 300ms 1 2, 5
0 13 103 QCI 9 300ms 1 2, 4
1 7 6 QCI 7 100ms 2 5
1 6 7 QCI 7 100ms 2 5
2 3 1 QCI 5 50ms 3 0, 1, 3
2 2 100 QCI 3 50ms 3 3, 4, 6
2 1 101 QCI 5 50ms 3 3, 6

This mapping ensures military-grade performance: QoS 2 meets sub-50ms la-
tency for C2 (npg c2, NPG 100) and control (npg control, NPG 1), QoS 1 sup-
ports reliable PLI (npg pli, NPG 6) with 100ms latency, and QoS 0 optimizes
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bandwidth for chat (npg chat, NPG 29). The SkyNetConvergenceEntity dy-
namically allocates slots via Weighted Fair Queuing, prioritizing high-QoS bear-
ers, while reorder queue ensures reliability for QoS 1 and 2, aligning with LTE
QCI’s packet error loss rates (e.g., 10−6 for QCI 5).

In conclusion, the 3-level hierarchy, inspired by LTE QCI, enables Skynet to
replicate MQTT’s QoS semantics, ensuring scalable, low-latency, and reliable
communication for swarm drone coordination and other tactical applications.

5 Dedication

The Skynet is dedicated to Vitalii Karvatskyi.

6 Conclusion

Link32 and Skynet provide a robust framework for tactical communication, com-
bining low-latency, security, and scalability for military applications, including
swarm drone coordination. Future improvements could address slot scalability
beyond 256 nodes, automated key distribution to replace manual provisioning,
retransmission mechanisms for dropped messages, and enhanced deduplication
to support larger networks.
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